# What is the 20th term of an arithmetic sequence is given that its 4th term is 79 and its ninth term is 54?

2
by Dgreat

2015-09-11T21:02:15+08:00

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
4th term = 1st term + 3d = 79
9th term = 1st term + 8d = 54

9th term - 4th term
54 - 79 = (1st term + 8d) - (1st term + 3d)
-25 = 1st term + 8d - 1st term - 3d
-25 = 5d
-5 = d

20th term
= 1st term + 19d
= 9th term + 11d
= 54 + 11(-5)
= 54 - 55
= -1

2015-09-13T15:37:58+08:00

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
To find d, let the a₄= a₁.

an= a₁ + (n-1) d
54= 79 + (6-1) d      *6 since we started to count the terms in a₄*
54 = 79 + (5)d
54 - 79 = 5d            * Transpose; combine like terms*
-25= 5d                  * Divide both sides by 5*
5

-5 = d

Find a₁:

an= a₁ + (n-1) d
54 = a₁ + (9-1) -5
54 = a₁ + (8) -5
54 = a₁ + (-40)
54 + 40 = a₁
94 = a₁

find a₂₀:

an= a₁ + (n-1) d
a₂₀ = 94 + (20 - 1) -5
= 94 + (19) -5
= 94 + (-95)
= -1