Answers

  • Brainly User
2016-01-09T23:13:09+08:00
Find the diagonal of the rectangle using Pythagorean Theorem:

Diagonal  \sqrt{(15) ^{2}+(12) ^{2}  }
               =  \sqrt{225 + 144}
               =  \sqrt{369}
               =  \sqrt{9(41)}
               = 3  \sqrt{41}  or 3(6.40) 
               = 19.2 inches

Solve for Circumference:
C = 2 π r

Radius (r)of circumscribing circle of rectangle:
= diagonal ÷ 2
= 19.2 inches ÷ 2
= 9.6 inches

Circumference = 2 (3.14) (9.6 inches)
   = 60.23 inches

ANSWER: CIRCUMFERENCE of circle = 60.23 inches

Area of Circumscribing circle:
= π r²
= (3.14) (9.6 inches)²
= (3.14) (92.16 inches²)
= 289.38 inches²

Area of rectangle:
= Length × Width
= 15 inches × 12 inches
= 180 inches²

Area outside the rectangle but inside the circumscribing circle:
= Area of circle - area of rectangle
= 289.38 inches² - 180 inches²
= 109.38 inches²

ANSWER: 109.38 inches² is the area outside the rectangle but within the circumscribing circle.

0