Answers

  • Brainly User
2016-02-04T00:21:18+08:00
Cost of each barbecue: x
Cost of each softdrink: y

Group A (Equation A):
    10x + 12y = 320

Group B (Equation B):
    6x + 4y = 160

Solve the system using Substitution Method:
Equation B:  
   6x + 4y = 160
   4y = 160 - 6x
   4y/4 = 160/4 - 6x/4
   y = -3x/2 + 40

Substitute -3x/2 + 40 for y in Equation A:
   10x + 12 (-3x/2 + 40) = 320
   10x -18x + 480 = 320
   -8x = 320 - 480
   -8x/-8 = -160/-8
   x = 20

Substitute 20 for x in y = -3x/2 + 40
   y = -3(20)/2 + 40
   y = -60/2 + 40
   y = -30 + 40
   y = 10

Cost of each barbecue: x = Php 20
Cost of each softdrink: y = Php 10

       ANSWER:  A single barbecue costs Php20.

Check:
Group A (Equation A):
   10x + 12y = 320
   10 (20) + 12 (10) = 320
    200 + 120 = 320
    320 = 320    (True)

Group B (Equation B):
    6x + 4y = 160
    6 (20) + 4 (10) = 160
    120 + 40 = 160
    160 = 160   (True)


0