Answers

2014-07-30T19:09:45+08:00
Just express it in the form of y-k = a(x-h)^2 where (h,k) is the vertex

y = x^2 + 7x + 10
y -10 - 49/4= (x^2 + 7x + 49/4) Just complete the square :)
y - 89/4 = (x + 7/2)^2

Voila! Unless I made an error in the subtration/addition, etc. part, then the vertex is (-7/2, 89/4)


0
2014-08-01T22:31:05+08:00
X²+7x+10
the vertex form is      a(x-h) +k  where  h & k are coordinates
                                     of the vertex of the parabola
thus x²+7x+10
=   [ x²+7x+ (7/2)²] - (7/2)²+10
=    (x+7/2)² - 49/4+10
=    (x+7/2) -9/4
so    the coordinates of the vertex are,    -7/2, -9/4
notice I added a - (7/2)² to the expression because in completing the square
I added (7/2)² to the expression in order to balance up



0