Answers

2014-10-04T12:44:07+08:00
The formula for finding the segment is
A =  \frac{1}{2} r^{2} ( \alpha -sin \alpha )

Lets name
A as area of the segment
 \alpha  = angle
r = radius
d = diameter

Solution:
Since diameter is given, we will divide it by 2 to find the radius so that we can use the formula of finding the segment.

d = 2r
r= \frac{d}{2}= \frac{16}{2}=8

Now lets solve A,
A= \frac{1}{2} 8^{2} (80-sin80)
A = 2,528.486
0
2014-10-04T22:22:19+08:00
Diameter  =  16cm
radius      =    8cm
Area of circle =    πr²
                       =π8²
Area of segment of circle subtended by an angle of 80°
 =   80/360 . π64             /  80° =    80/360 part of a circle
    ~  44.21sqcm
0